Fundamentals of Asset Management

Background: Optimized Investment Decision Making

A Hands-On Approach
View 6: AM plan 10-step process

1. Develop Asset Registry
2. Assess Condition, Failure Modes
3. Determine Residual Life
4. Determine Live Cycle & Replacement Costs
5. Set Target Levels of Service (LOS)
6. Determine Business Risk (“Criticality”)
7. Optimize O&M Investment
 - Root Cause; RCM; PdM; ORDM
8. Optimize Capital Investment
 - Confidence Level Rating; Strategic Validation; ORDM
9. Optimize O&M Investment
10. Optimize Capital Investment
 - Determine Funding Strategy
11. Build AM Plan

Investment Decision-Making
Three fundamental management decisions

1. What are my work crews doing, where are they doing it—*and why*?
2. *What* CIP projects should be done—*and when*?
3. When should I *repair*, when should I *rehab*, when should I *replace*?

These decisions typically account for *over 80%* of a utility’s annual expenditures.
Asset decision framework

Big picture
- Whole portfolio perspective
 - Trends
 - Macro forces
- Policy framework
- Budget arena

Micro view
- Event based
- Specific asset focus
- Case-by-case decision points

Repair? Refurbish? Replace? Augment?
Managing the “asset consumption” process

Advancing Asset Management
There exists for every asset, a theoretical “best” investment.
Bringing it all together

Repair-refurbish-replace decision

1. Fix when broken (run to failure)
2. End of prescriptive life
 - 12 years old
 - 3,000 run-time hours
 - 35,000 miles
3. Rule of thumb
 - 3 breaks per mile or in 24 hours
 - Poor condition (and worst first)
 - FCI > 6% (Facility condition index—O&M as a percentage of replacement cost)
4. Optimized renewal decision making (ORDM)
What is optimized decision making?

- **Systematic search for lowest-cost renewal investment**
- **Based on interaction of**
 - Cost trends (direct O&M, indirect)
 - Condition trends (decay/survivor curve)
 - Risk-consequence trends
- **Three major approaches**
 - Valued expert judgment
 - Lowest projected average life-cycle cost per year of residual life;
 - Operational costs
 - Risk-weighted, full economic costs
 - Intervention factors; condition, performance, reliability, Business Risk Exposure, etc.
Three levels of ORDM

- **Level 1** Decision tables/trees
 - Structured, often substantially qualitative, value judgment-based
 - Event-focused, scenario-based

- **Level 2** Lowest average PV life cycle cost scenario analysis
 - Specific decision event-focused
 - Spreadsheet-driven
 - Can be used to refine decision tables/trees

- **Level 3** Integrated intervention and full economic life cycle cost optimization
 - Sophisticated modeling
 - Objective function-driven
 - Both portfolio- and event-driven
So, what to we mean by…

Minimum life cycle cost strategies

- Fundamental asset management options available to the management team are
 - Do nothing (zero-based strategy)
 - Status quo
 - Operate differently
 - Maintain differently—run to failure, preventive-based, predictive-based (condition, usage)
 - Repair
 - Refurbish/rehabilitate
 - Replace
 - Decommission
 - Non asset-based
- Which strategy for each asset?
- Combinations over life cycle

It’s *all* investment!
What do we mean by “alternative treatment options”?

- **Maintain and Repair**
 - Option 1
 - Option 2

- **Refurbish**
 - Option 1
 - Option 2

- **Replace**
 - Option 1
 - Option 2
 - Option 3

- **Non-asset Options**
 - Option 1
Our “decision rule”

Estimated total costs for the effective life of the solution (capital, operations, & maintenance)

Look for “alternative treatment” with lowest *average annual* (present value) cost (average annual cost = total annual cost/year)

<table>
<thead>
<tr>
<th>Maintenance/repair Option 1...N</th>
<th>Costs</th>
<th>Yr 1</th>
<th>Yr 2</th>
<th>Yr 3</th>
<th>Yr 4</th>
<th>Yr 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPV Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Say, a 40-year solution
ORDM decision rules

- **Which** strategies?
 Lowest average annual cost (PV) is used to determine which strategies to use

- **When** to change strategies?
 - Lowest marginal cost is used to determine when to transition to the next strategy, or
 - When intervention point is triggered by interaction of trend lines

PV is present value
ORDM future costs

![Graph showing ORDM future costs over Age of Assets]

- **Future total maintenance costs**
- **Unplanned maintenance**
- **Planned maintenance**

Note: The graph illustrates how future maintenance costs change with the age of assets, distinguishing between planned and unplanned maintenance costs.
ORDM—where do the savings come from?

- Future total maintenance and operations before renewal
- Future total maintenance and operations after renewal
- Renewal work completed
- Potential savings
- Estimated future unplanned costs
- Estimated future planned maintenance cost

Total Maintenance Costs

Age of Assets

Decreasing

Increasing
ORDM—timing the renewal

- Optimizing the savings
- Trial: Several renewal dates

ORDM is optimized renewal decision-making, LTD is life to date
Setting up the basic analysis: lowest annual life cycle cost

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discount Rate</td>
<td>4.0%</td>
<td>Avg Annual $</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Repair/Maintenance</td>
<td>Total</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Capital</td>
<td>$4,500</td>
<td></td>
<td>$4,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Operations</td>
<td>$2,033.91</td>
<td></td>
<td>$350.00</td>
<td>$402.50</td>
<td>$414.58</td>
<td>$427.01</td>
<td>$439.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Maintenance</td>
<td>$1,803.29</td>
<td></td>
<td>$350.00</td>
<td>$365.25</td>
<td>$360.58</td>
<td>$365.93</td>
<td>$371.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Total Costs</td>
<td>$8,337.20</td>
<td>$1,667</td>
<td>$5,200.00</td>
<td>$757.75</td>
<td>$775.15</td>
<td>$793.00</td>
<td>$811.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NPV Total Costs</td>
<td>$8,043.75</td>
<td>$7,699</td>
<td>$5,200.00</td>
<td>$728.61</td>
<td>$716.67</td>
<td>$704.97</td>
<td>$693.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Refurbish</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Capital</td>
<td>$95,500.00</td>
<td></td>
<td>$1,775.00</td>
<td>$1,775.00</td>
<td>$1,775.00</td>
<td>$1,775.00</td>
<td>$1,775.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Operations</td>
<td>$7,515.19</td>
<td></td>
<td>$325.00</td>
<td>$329.88</td>
<td>$334.82</td>
<td>$339.85</td>
<td>$344.94</td>
<td>$350.12</td>
<td>$355.37</td>
<td>$360.70</td>
</tr>
<tr>
<td>11</td>
<td>Maintenance</td>
<td>$6,887.73</td>
<td></td>
<td>$275.00</td>
<td>$279.13</td>
<td>$283.31</td>
<td>$287.56</td>
<td>$291.91</td>
<td>$296.25</td>
<td>$300.70</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Total Costs</td>
<td>$49,922.92</td>
<td></td>
<td>$2,495</td>
<td>$2,375.00</td>
<td>$2,384.00</td>
<td>$2,393.14</td>
<td>$2,402.41</td>
<td>$2,411.82</td>
<td>$2,421.37</td>
<td>$2,431.07</td>
</tr>
<tr>
<td>13</td>
<td>NPV Total Costs</td>
<td>$34,954.97</td>
<td>$1,749</td>
<td>$2,375.00</td>
<td>$2,292.31</td>
<td>$2,214.59</td>
<td>$2,135.73</td>
<td>$2,061.63</td>
<td>$1,990.19</td>
<td>$1,921.31</td>
<td>$1,854.89</td>
</tr>
<tr>
<td>14</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Capital</td>
<td>$61,000.00</td>
<td></td>
<td>$1,525.00</td>
<td>$1,525.00</td>
<td>$1,525.00</td>
<td>$1,525.00</td>
<td>$1,525.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Operations</td>
<td>$10,883.26</td>
<td></td>
<td>$200.00</td>
<td>$203.00</td>
<td>$206.05</td>
<td>$209.14</td>
<td>$212.27</td>
<td>$215.46</td>
<td>$218.66</td>
<td>$221.97</td>
</tr>
<tr>
<td>17</td>
<td>Maintenance</td>
<td>$12,243.67</td>
<td></td>
<td>$200.00</td>
<td>$200.00</td>
<td>$200.00</td>
<td>$200.00</td>
<td>$200.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Total Costs</td>
<td>$84,092.55</td>
<td></td>
<td>$2,102</td>
<td>$1,295.00</td>
<td>$1,328.00</td>
<td>$1,361.35</td>
<td>$1,394.14</td>
<td>$1,437.27</td>
<td>$1,486.46</td>
<td>$1,532.06</td>
</tr>
<tr>
<td>19</td>
<td>NPV Total Costs</td>
<td>$42,169.61</td>
<td>$1,054</td>
<td>$1,925.00</td>
<td>$1,353.65</td>
<td>$1,783.56</td>
<td>$1,719.44</td>
<td>$1,655.99</td>
<td>$1,615.46</td>
<td>$1,583.35</td>
<td>$1,550.70</td>
</tr>
</tbody>
</table>
Setting up the basic analysis: lowest annual life cycle cost

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discount Rate</td>
<td>1.0%</td>
<td>Avg Annual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Repair/Maintenance</td>
<td>Total</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Capital</td>
<td>$4,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Operations</td>
<td>$2,033.91</td>
<td>$350.00</td>
<td>$402.50</td>
<td>$414.50</td>
<td>$427.01</td>
<td>$439.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Maintenance</td>
<td>$1,803.29</td>
<td>$350.00</td>
<td>$365.25</td>
<td>$360.50</td>
<td>$365.59</td>
<td>$371.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Total Costs</td>
<td>$5,337.20</td>
<td>$757.75</td>
<td>$775.15</td>
<td>$793.00</td>
<td>$811.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PV Total Costs</td>
<td>$2,259.45</td>
<td>$750.25</td>
<td>$759.88</td>
<td>$769.68</td>
<td>$779.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Refurbish</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Capital</td>
<td>$50,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Operations</td>
<td>$7,515.19</td>
<td>$325.00</td>
<td>$329.38</td>
<td>$334.02</td>
<td>$339.56</td>
<td>$344.94</td>
<td>$350.12</td>
<td>$355.37</td>
<td>$360.70</td>
<td>$366.06</td>
</tr>
<tr>
<td>11</td>
<td>Maintenance</td>
<td>$12,243.67</td>
<td>$279.13</td>
<td>$283.31</td>
<td>$287.56</td>
<td>$291.87</td>
<td>$296.25</td>
<td>$300.70</td>
<td>$305.21</td>
<td>$309.73</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Total Costs</td>
<td>$44,302.92</td>
<td>$2,384.00</td>
<td>$2,393.14</td>
<td>$2,402.41</td>
<td>$2,411.82</td>
<td>$2,421.37</td>
<td>$2,431.07</td>
<td>$2,460.91</td>
<td>$2,450.91</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PV Total Costs</td>
<td>$45,382.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14	Replace										
15	Capital	$61,000.00									
16	Operations	$10,853.56	$200.00	$203.00	$206.05	$209.14	$212.27	$215.46	$218.69	$221.97	$225.25
17	Maintenance	$12,243.67	$200.00	$200.00	$200.00	$200.00	$200.00	$200.00	$200.00	$200.00	$200.00
18	Total Costs	$64,097.25	$2,102								
19	PV Total Costs	$69,240.55									

Advancing Asset Management 18
Adding uncertainty: a decision tree approach — Tom’s pump

A Decision Point

Pump Options

A Chance Point

Repair

Min Failure: (50%) ($70,000)
Max Failure: (90%) ($70,000)

Replace

Min Failure: (150%) ($17,000)
Max Failure: (300%) ($17,000)

Refurbish

Min Failure: (100%) ($6,000)
Max Failure: (800%) ($6,000)

An option

Weighted Average

$78,000/2 $39,000
$76,500/2 $38,250
$98,000/2 $49,000

An outcome

Probability of Outcome

Cost of Outcome

(Assume 40 year life)
Adding non-financial decision elements: weighted decision tables

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>A*</th>
<th>Weight</th>
<th>B*</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life cycle cost</td>
<td>3</td>
<td>10</td>
<td>30</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Safety</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Environmental impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Odor</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of service</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Reliability</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Availability</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>81</td>
<td></td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

* Scored 1 (low) to 10 (high)
Facility condition indices

Facility Condition Index (FCI) = $\frac{\text{Cost of deferred maintenance/renewal}}{\text{Current replacement cost of asset}} = X \%$

- **Poor**: > 10%
- **Fair**: 5 - 10%
- **Good**: < 5%

Typically applied to buildings and related facilities
TeamPlan main screen
Management strategy groups

- Grouping of assets with similar renewal and behavioral patterns
- Purpose
 - Allocate defaults to assets (missing data)
 - Assign asset lives and decay curves
 - Calculate current replacement costs
 - Calculate business risk
 - Consequence of failure
 - Probability of failure
 - *Determine appropriate investment intervention*
- Example
 Gravity pipes, RCP, built <1950, high H$_2$S
Creating management strategies
TeamPlan decision logic
Advanced level ORDM example: asset operations

- Operate?
- Average operations costs?
- Which curve?
- Curve shape factor?

![Graph showing Unit Maintenance % of RV and Condition Rating with various curves and conditions](image-url)
Advanced level ORDM example: asset maintenance

- Maintain?
 - Managed (CMMS)?
 - Non-managed (CMMS)?
 - Run to failure (CMMS)?
- Average maintenance costs?
 - Use CMMS as base
- Which curve?
- Curve shape factor?
Advanced level ORDM example: asset rehabilitation

- Rehabilitate?
 - Non-managed (CMMS)?
 - Run to failure (CMMS)?
- Effective life?
 % maximum potential life
- Installation factor?
- Cost curve?
- Cost shape factor?
- Condition curve shape factor?
Advanced level ORDM example: asset replacement

- Is asset type valued by size?
- What is the default size and unit code of the asset?
- Should asset type strategy vary by size?
- Does the length and depth of the asset type effect value?
- What is the maximum potential of this asset type?
- What is the unit cost of the asset (per unit)?
- What is the installation/difficulty factor?
- Which curve represents the decay curve of the asset type?
Random life statistical model

- Assets are allocated a random life centered around the allocated average life
- Utilizes the normal distribution bell-curve
- Reflects real life asset failure uncertainty
Reporting and scenarios
Drilling into assets
Asset renewal decision model
Overall projected (optimized) expenditures
Key points from this session

How do I optimize O&M and capital investment?

Key Points:

- Follow a logical best practice process – Optimized Decision Making or Life Cycle Costing Analysis.
- Get the best information and data you have, consider all feasible alternatives, and generate your best strategy.
- Consider non-asset solutions!

Associated Techniques:

- Optimized renewal decision-making
- Life-cycle costing (including projections)
- Decision-tree analysis
- Weighted decision tables